题目

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

分析

递归算法 关于本题,前提是n个台阶会有一次n阶的跳法。分析如下:
f(1) = 1
f(2) = f(2-1) + f(2-2) //f(2-2) 表示2阶一次跳2阶的次数。
f(3) = f(3-1) + f(3-2) + f(3-3)

f(n) = f(n-1) + f(n-2) + f(n-3) + … + f(n-(n-1)) + f(n-n)

说明:

1)这里的f(n) 代表的是n个台阶有一次1,2,…n阶的 跳法数。 2)n = 1时,只有1种跳法,f(1) = 1 3) n = 2时,会有两个跳得方式,一次1阶或者2阶,这回归到了问题(1) ,f(2) = f(2-1) + f(2-2) 4) n = 3时,会有三种跳得方式,1阶、2阶、3阶, 那么就是第一次跳出1阶后面剩下:f(3-1);第一次跳出2阶,剩下f(3-2);第一次3阶,那么剩下f(3-3) 因此结论是f(3) = f(3-1)+f(3-2)+f(3-3) 5) n = n时,会有n中跳的方式,1阶、2阶…n阶,得出结论: f(n) = f(n-1)+f(n-2)+…+f(n-(n-1)) + f(n-n) => f(0) + f(1) + f(2) + f(3) + … + f(n-1)

6) 由以上已经是一种结论,但是为了简单,我们可以继续简化: f(n-1) = f(0) + f(1)+f(2)+f(3) + … + f((n-1)-1) = f(0) + f(1) + f(2) + f(3) + … + f(n-2) f(n) = f(0) + f(1) + f(2) + f(3) + … + f(n-2) + f(n-1) = f(n-1) + f(n-1) 可以得出: f(n) = 2*f(n-1)

7) 得出最终结论,在n阶台阶,一次有1、2、…n阶的跳的方式时,总得跳法为: | 1 ,(n=0 ) f(n) = | 1 ,(n=1 ) | 2*f(n-1),(n>=2)

源码

public class Solution {
    public int JumpFloorII(int target) {
        if (target <= 0) {
            return -1;
        } else if (target == 1) {
            return 1;
        } else {
            return 2 * JumpFloorII(target - 1);
        }
    }
}

扩展思想

在理解上述分析以后,可以推理出,当n>=2时,f(n)=2*f(n-1)=2*2*f(n-2)=…=2^(n-1); 理解这些以后,我们就可以利用移位运算来解决这个问题,源码如下:

源码

public class Solution {
    public int jumpFloorII(int number) {
 		if (number <= 0) {
            return -1;
        }else {
            return 1<<--number;
        }
    }
}